
JPL Publication 88-32, Rev. 1_Vol. III

Concurrent Image Processing
Executive (CIPE)

Volume II1: User's Guide

Mih-seh Kong

CgCL

,, 3 f _].

uncl :_s

0293_3Z

March 15, 1990

I I/LSA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Instituteof Technology
Pasadena, California

1. Report No. JPL Pub. 88-32

4. Title and Subtitle

CONCURRENT IMAGE PROCESSING Executive (CIPE)

2. Government Accession No.

7. Author(s) Meemong Lee, Gregory T. Cooper,

Steven L. Groom, Alan S. Mazer, Winifred I. Williams

9. Performing Organization Name and Address

JET PROPULSION LABORATORY

California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91109

12. Sponsoring Agency Name and Addre_

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

TECHNICAL REPORT STANDARD TITLE PAGE
i

3. Reclpient's Catalog No.

5. Report Date
November 1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.
NAS7-918

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code
REI50 BP-889-20-41-I 7-62

15. Supplementary Notes

• A_tract
This report describes the design and implementation of a Concurrent Image

Processing Executive (CIPE), which is intended to become the support system software

for a prototype high performance science analysis workstation. The target machine for

this software is a JPL/Caltech Mark lllfp Hypercube hosted by either a MASSCOMP 5600

or a Sun-3, Sun-4 workstation; However, the design will accommodate other concurrent

machines of similar architecture, i.e., local memory, multiple-instruction-multiple-

data (MIMD) machines. The CIPE system provides both a multimode user interface and an

applications programmer interface, and has been designed around four loosely coupled

modules: (i) user interface, (2) host-resident executive, (3) hypercube-resident

executive, and (4) application functions. The loose coupling between modules allows

modification of a particular module without significantly affecting the other modules

in the system. In order to enhance hypercube memory utilization and to allow expansior

of image processing capabilities, a specialized program management method, incremental

loading, was devised. To minimize data transfer between host and hypercube, a data

management method which distributes, redistributes, and tracks data set information

was implemented. The data management also allows data sharing among application

programs. The CIPE software architecture provides a flexible environment for
scientific analysis of complex remote sensing image data, such as imaging spectrometry

utilizing state-of-the-art concurrent computation capabilities.

Key Worm _elected by Authm(s))

Computer Programming and Software

18. Distribution Statement

Unclassified - Unlimited

Security Clmsif. _f thls'_ 20. Security CJassif. _f th_--_Unclassified Unclassified

21. No. of Pages 22. Price

107

JPL 0184 R 9183

JPL Publication 88-32, Rev. 1, Vol. III

Concurrent Image Processing
Executive (CIPE)
Volume II1: User's Guide

Mih-seh Kong

March 15, 1990

National Aeronautics and

Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, under a contract with the National

Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

ABSTRACT

CIPE (the Concurrent Image Processing Executive) is both an executive which organ-
izes the parameter inputs for hypercube applications and an environment which pro-

vides temporary data workspace and simple real-time function definition facilities for

image analysis. CIPE provides two types of user interface. The Command Line Inter-

face (CLI) provides a simple command-driven environment allowing interactive func-
tion definition and evaluation of algebraic expressions. The menu interface employs a

hierachical screen-oriented menu system where the user is led through a menu tree to

any specific application and then given a formatted panel screen for parameter entry.

This document describes how to initialize the system through the 'setup' function, how

to read data into CIPE symbols, how to manipulate and display data through the use of
'executive functions', and how to run an application in either user interface mode.

iii

Table of Contents

.

2.

3.

4.

5.

Introduction ..

Command Mode ...

Menu Mode ...

System Setup ...

Executive Functions ...

Applications ...

Appendix A ..

Appendix B ..

1

3

7

11

19

39

A1

B1

PRECEDING PAGE BLANK NOT FILMED

V

fAGIL...,_.._ INTtNTIONALL_{BLANK

List of Figures

Figure 1 :

Figure 2 :

Figure 3 :

Main menu .. 9

Restore submenu ... 9

Read function in menu mode I0

Figure 4 : Example for executing ML function in menu mode

Figure 5 :

Figure 6 :

Figure 7 :

Figure 8 :

Figure 9 :

..... 10

Example for displaying output symbol in menu mode -- 12

Setup function in menu mode 12

Menu tree ... 14

Display device allocation in menu mode 16

Select display unit in menu mode 16

List of Tables

Table I :

Table II :

List of CIPE commands 4

An Example on Macro File 5

vi

INTRODUCTION

CIPE (the Concurrent Image Processing Executive) is both an executive which organ-

izes the parameter inputs for hypercube applications, and an environment which pro-

vides temporary data workspace and simple real-time function definition facilities. In
the more function-rich command mode, all of these capabilities are available to the

user. In the menu mode, the concentration is on the executive with the goal being to

guide the user in the definition of parameters for specific applications.

The command mode uses a simple line-at-a-time, command-driven interface. In the

menu mode, the user is led through a menu tree to specific applications and then given

a formatted panel screen to fill out. Navigation and help are accessed through function

keys.

The main purpose of CIPE is to make hypercube processing available in a straightfor-

ward way. It was assumed that the concurrent processor is connected to a host com-

puter system which includes the usual broad range of operating system services, file
I/O, display device hardware, network connections, etc. In order to develop an image

processing executive for a virtual concurrent system environment, system setup pro-
cedures, data management schemes among multiple systems, and concurrent system

interface methods were implemented. A set of 'executive functions' is provided by

CIPE to setup the system configuration and to manipulate data. All image processing

applications being developed for the hypercube will also be made part of the CIPE
environment.

Due to the data-heavy characteristic of image processing, CIPE minimizes data I/O by

keeping data resident and by loading image processing functions incrementally at run
time. This is especially crucial with the hypercube since there is a serious data transfer

bottleneck between host and hypercube. Image processing functions are managed in

CIPE through a function dictionary file which keeps a record of all available applica-

tion programs. When a user requests a function, CIPE searches for the requested func-
tion name in the function table and reads its executable module into the system. A

user can also activate his own executable module by specifying the module name.

Datasets are managed in CIPE via a symbol table. Each dataset is represented by a

CIPE 'symbol' which is a data structure containing the size, datatype, physical data
location, and data distribution map if the data is in the hypercube.

This User's Guide is composed of the following five main sections:

Command Mode -- A description on maneuvering through the Command Mode; what

the terms mean and how the pieces interact.

Menu Mode -- How to use the Menu Mode; how the menus are organized and how

parameters are fed to applications.

System Setup -- A description on setting up the computing system configuration.

Executive Functions -- Functions for data manipulation and image display.

Applications -- Current list of application functions available through CIPE.

-1-

1.COMMAND MODE

It is not necessary to understand the workings of the system intemals described here to

be able to use the system. If you simply want to run a couple of applications, you can

skip this section and turn directly to section 2 -- Menu Mode.

When you first start CIPE (by typing 'cipe' at the Unix prompt) it responds with an

initialization statement, followed by the CIPE prompt: '>'. For a list of the built-in
commands see Table I. For a list of the applications functions and their arguments, see

section 5. At the CIPE prompt, if you wish to see a list of the CLI (Command Line

Interface) commands and applications functions type 'help'. To obtain help on an indi-

vidual command or function, type 'help command/function_name. The CLI also

allows the user to escape CIPE execution temporarily and run such operating system

utilities as editing a file.

CIPE has four main constructs that the user can manipulate:

SCRIPT -- a grouping of commands (functions and simple control statements) typed

in by the user and used to perform higher level tasks (e.g. image filtering combined

with background subtraction and display as one function invocation). Scripts can make
use of the 'DEFINE' command to allow argument substitution. In this way scripts are

frequently referred to as 'functions' or 'macros'. They may be thought of as 'user

defined functions' as opposed to CIPE functions. Scripts also resemble user-defined

procedures by allowing commands or functions to be performed repetitively through

looping and other conditional statements. An example of a macro file is given in Table
II to illustrate how script can be a powerful way of utilizing the CLI mode features

such as nested function calls (pipe), nested macro calls, and nested control statments.

The macro ip3-512 in Table II merges two 512 by 512 images while eliminating the
seam line on the boundary by using the pyramid image processing technique. Two

basic pyramid tools 'reduce' and 'expand; and a subroutine 'concat', (which averages

the boundary pixels between two concatenated images) are called repeatedly by the
macro.

WORKSPACE -- a script (i.e. group of DEFINEd commands of functions) stored on a
permanent disk file which can be reloaded or edited. LOADing a workspace causes

each of the lines in the file named to be executed. Any DEFINEd functions that have

been typed in by the user (or by a previous LOAD for that matter) can be SAVEd to a
file. These files can be EDITed at any time (EDIT invokes the vi editor). Files

created by EDIT can be LOADed and are not restricted to DEFINEd functions, as is
the case for SAVEd files.

VARIABLE -- all data accessed by CIPE functions must be stored intemally in tem-

porary working space and referred to through variable names. A variable may refer to
an integer constant, a three dimensional array of floating point numbers or anything in

between. The allowed data types are 8-, 16-, and 32-bit integers (C datatypes unsigned

char, short int, and int) and 32-bit floating point (C datatype float). Variables can

represent single numbers (e.g. a=6), or 1-, 2-, or 3-dimensional arrays. Variables can

be grouped into expressions using arithmetic and logical operators (e.g. b'c+7 or a>c).

Such constructs are particularly useful to allow looping and checking inside DEFINEd
functions.

-3-

PR,.-CEDI,.,.= PA_E _!.-ANK NOT FILMED

Table I: List of CIPE commands

syntax

DEFINE function (formal_args)
command list END

EDIT workspace

FOR variable = expr TO
expr command_list END

FOR variable = expr TO expr

STEP expr command_list END

HELP command/function_name

IF expr THEN cmd list ELSE IF
ELSE IF expr THEb/cmd_list...
ELSE cmd list ENDIF

LOAD workspace

PRINT expr_list

QUIT

READ variable FROM "filename"

SAVE workspace

SET attribute TO value

SHOW func name

SYMBOLS

TRACES

TURN boolean attribute

WHILE value commands END

WRITE value TO filename

output_variable -- expr

function (exp0

!unixcommand

description

define a function as a collection
of commands or functions

edit a workspace using vi screen editor

performs same set of commands or
functions multiple times

same as last command

display a list of CLI commands and
existing application functions including
user-defined functions and scripts

retrieve a workspace from the disk and execute
the commands or functions in the workspace

display the specified value(s). Multiple
values should be separated with commas.

exit CIPE section

read dam from disk file to variable

save all current user-defined functions

specify attribute, existing attributes are: 'coprocessor',
'cube dimension', 'display device id' and 'debug level'

print the user-defined function in a pretty format

show a list of all existing symbols

show the traceable system parameters and their trace status

boolean is either 'on; or 'off', boolean attributes
are: 'mouse', 'logging', 'appl trace'

executes a set of commands or functions in a WHILE loop

write data to a disk file

assign the value of expr to outputvariable

execute a function

perform the specified unix command

-4-

Table H : An Example on Macro File

define cat512(x,y)
cat512=concat(copy(x, { 1,1,512,256 }),copy(y, {1,257,512,256 }),1,1)

end

define cat256(x,y)
cat256=concat(copy(x, [1,1,256,128 }),copy(y, {1,129,256,128 }),1,1)

end

define cat128(x,y)
cat 128=concat(copy(x, {1,1,128,64 }),copy(y, {1,65,128,64}),1,1)

end

define cat64(x,y)

cat64=concat(copy(x, {1,1,64,32 }),copy(y, {1,33,64,32 }),1,1)
end

define lp(a,ar)
lp=sub(a,expand(ar,1))
end

define lp3_512(x,y)
xrl=reduce(x,1)

xr2=reduce(xrl,1)

xr3=reduce(xr2,1)

yrl=reduce(y,1)

yr2=reduce(yrl,1)
yr3=reduce(yr2,1)

lpxO=lp(x,xrl)

lpxl=lp(xrl,xr2)
lpx2=lp(xr2,xr3)

lpyO=lp(y,yrl)

lpyl=lp(yrl,yr2)
lpy2=lp(yr2,yr3)

lpxyO=cat512(IpxO,IpyO)

lpxyl=cat256(lpxl,lpyl)

Ipxy2=cat128(lpx2,1py2)

xy3:cat64(xr3,yr3)

txy2=expand(xy3,1)

xy2=add(txy2,1pxy2)
txyl=expand(xy2,1)

xyl=add(txyl,lpxyl)

txyO = expand(xyl,1)

!p3_512 = add(txyO,lpxyO)
end

-5-

Variable references are 'symbols' in the CIPE syntax. A user may create symbols by

reading a file, by copying an existing symbol (B = A), by assigning a set of values (C
= {2,2}), or by activating a function (D = sqrt(A)). As a symbol is created, its com-

plete set of data attributes are stored in the symbol table. A user may also delete a
symbol (delete(A)) or overwrite a symbol.

Aq_FRIBUTE -- an intemal CIPE flag. Attributes tell CIPE such things as which
display device to use and whether to keep a log file or not. Attributes come in two

types: ones that have values that may be SET to a value, and ones that are Boolean

flags and can only be TURNed on or off.

At the command mode prompt, the user must enter either a built-in command or a

function call (with arguments). These function calls can be to applications functions,
to DEFINEd functions (i.e. SCRIPT described above), or to functions the user created.

The following shows a simple example of a CIPE CLI session. In this example, the

user reads in a blurred image and a blurring kernel from disk files, restores the image
with function 'ML', and displays the resultant image with the 'draw' function.

unix% cipe
CIPE Version 3.2

> set display device id to 0

> read a from "/ufs/images/blur.img"

> read k from "/ufs/images/kemel.img"
> b = ML (a, k, 4.0, 10)

> draw (b, {1,1})

-6-

2. MENU MODE

Menu mode is a relatively painless way to find and execute a specific application pro-

gram. Its interface to the user is a set of screens, each consisting of three windows
(see Figure 1). The top window (function window) contains the current menu, the bot-
tom window (menu control window) has status and general usage information, and the

large middle window (parameter window) will have the parameter fields to be filled out

for the application and any messages that are sent out.

To invoke Menu mode from Command mode, enter the command 'menu' at the

prompt. In the Main Menu (shown in Figure 1), each of the entries in a menu

represents either a sub-menu or a function. The following two simple naming stan-
dards are adopted to make these two types of names easily distinguishable: 'all func-
tion names are in lower case except for acronyms', and 'the sub-menu names have a

"+" suffix. Picking a sub-menu (either by moving the cursor to that item and typing a

carriage return or by typing the number associated with the item) causes that menu to

take the place of the current menu. Picking a function causes the parameter list (with
blanks for the values to be filled in) to appear in the parameter window. Once the

values have been entered, the application can be run.

Maneuvering around the menu tree is done by selecting sub-menus, popping up one

level in the tree by typing ^P, or jumping up to the top of the tree with ^R. Help on

menu items or function parameters is available through ^H.

Some of what look like functions in Menu mode are really groups of built-in CIPE

functions (e.g. 'math' functions). However, this is transparent to the user. Also,
because the menus are not intrinsic to CIPE but rather are convenient user aides, there

is nothing to prevent applications or even whole menu structures from being duplicated
at different places in the tree. Since there is no way to jump laterally across the tree

this is sometimes advantageous. For this reason, the 'disp+' and 'symbol+' sub-menus

appear in every application entry. In addition to the CIPE provided application func-
tions, CIPE also allows the user to execute his own application functions (ref.

'cipedict' in section 3, 'System Setup').

The following is an example showing how to restore a blurred image using the restora-

tion function provided by CIPE. In general, there are three steps in running an appli-
cation program: (1) set up the environment such as the coprocessor used and its dimen-

sion, display device, trace level, etc. (2) read input data to symbols either from disk

files or through menu inputs, (3) specify function name and fill in all the parameters
needed. Step 1 only needs to be done once per CIPE session; 2 and 3 can be repeated

as many times as necessary.

The example will use the 'ML' function to restore an image using the host computer.

The blurred image and the kernel matrix are stored in the disk files 'blur.img' and
'kernel.img'. All image files in CIPE need to have a header file specifying the dimen-

sion and the datatype of the image. The associated header files for the two files used
here are 'blur.hdr' and 'kemel.hdr'.

Once the user has the input image files and appropriate header files, he enters cipe and

types 'menu' to get into Menu mode. At the main menu, he uses 'setup' to specify the

-7-

processorto beused,thetracelevel,etc.(Thedetaileddescriptionsof eachfield in the
'setup'menuandthe allocationof thedisplaydevicewill bedescribedin section3,
'SystemSetup'.)Next the 'restore+'sub-menuis selected(Figure2), andthe 'read'
functionin the 'symbol+'sub-menuis invokedto readthedataintoCIPEsymbolsas
shownin Figure3. In theexample,datain 'blur.img' is readinto theCIPEsymbol
'a', with theparametersfromtheheaderfile 'blur.hdr'automaticallyinsertedastheini-
tial definitionof the imagearea(startline, start_pixel,numberoflines, numberof
samples).

Again in the 'restore+'menu,the 'ML' functionis selected.Theusersimplyfills out
thelist of parametersshownin Figure4, andtheprogramrunswith theresultantimage
goingto symbol'b'.

After theexecutionof theprogram,if theuserwishesto displaytheresultantimage,he
selectssub-menu'disp+'. In the example,we displaythe restoredimage'b' using
'draw' function(assumingthatwehaveallocatedandselectedthedisplaydeviceat the
beginningof the session).Figure5 showsthe list of parametersto be filled in the
'draw' function.

-8-

2:disp+ 4:builtin+ 6:filter+ 8:geom+
l:symbol+ 3:mssdisp+ 5:xform+ 7:restore+ 9:stretch+

I MainMenu ^H=Help ^R=MainMenu^X=Exit ^D=Hardcopy
^P=Previousmenu
RETURN=Endselect

Figure1: Mainmenu

I 0:symbol+ 2:feature__psf 4:kernel 6:MEl:disp+ 3:image_psf 5:invfilter 7:ML

restore+ ^H=Help ^R=Main Menu ^P=Previous menu
^X=Exit ^D=-Hardcopy RETURN=End select

Figure 2: Restore submenu

-9-

0:list l:read 2:copy 3:assign 4:save 5:delete 6:print]

symbolname
file name
area(sl,ss,nl,ns,sb,nb)

/ufs/cipe/blur.img
1

1

256

256

1
1

symbol+ ^H=Help ^P=Abort data entry "T=Next value

^L=Refresh ^E=End data entry ^D=Hardcopy

Figure 3: Read function in menu mode

0:symbol+ 2:feature_psf 4:kernel 6:ME

1:disp+ 3:image_psf 5:invfilter 7:ML

input image a
kemel k

output symbol b

estimated noise per pixel
max iteration count 10

4

I restore+ ^E=End data entry ^H=Help^P=Abot_ data entry ^D=Hardcopy "T=Next value ITAB=Next field

Figure 4: Example for executing ML function in menu mode

- 10-

3. SYSTEM SETUP

This section describes the functions that perform interactive system configuration.

They include the allocation of the coprocessor along with the selection of various

debugging and tracing levels, and the selection and aUocation of the display device. In
menu mode, these functions are performed through the use of the 'setup' function in

the main menu and the functions under 'alloc+' submenu.

setup function

In menu mode, a list of parameters is presented to the user (Figure 6) to be filled in.

In CLI mode, however, it requires a system command to specify each parameter. The

following is the list of parameters to be set. The exact syntax (shown in block letters)

is required for the command to be accepted in the CLI mode.

coprocessor

This parameter enables the user to allocate and de-allocate a coprocessor.

or

> set coprocessor to coprocessorname

> set coprocessor to none

Since the hypercube is a single user system, de-allocating it allows sharing of the cube

among multiple users.

cube dimension

This parameter sets the hypercube dimensions. For a dimension of n, the hypercube

provides 2" nodes. This field will be shown on the screen if the coprocessor is

specified.

> set cube dimension to n

/oggi g

This option allows the user to have a log file created which records what the user has

done during the CIPE session. This file is created in the user's home directory under
the name 'session.log.pid' where pid is the process identification number of the ses-
sion.

or

> turn on logging

> turn off logging

-11-

0:symbol+
1:alloc+

2:stretch+
3:zoom

4:draw
5:drawcolor

6:erase
7:histo 8:cursor 19:hardcopy

symbol name
display location (sl,ss)

b

disp+ ^E=End data entry ^H=Help "T=Next value^P=Abort data entry ^D=Hardcopy TAB=Next field

Figure 5: Example for displaying output symbol in menu mode

2:disp+ 4:builtin+ 6:filter+ 8:geom+]
l:symbol+ 3:mssdisp+ 5:xform+ 7:restore+ 9:stretch+ I

Coprocessor no coprocessor

Logging? NO

Trace On? NO

Menuconfig

Dictionary
Input path

Output path

/judy/ufs/cipe/rnenuconfi g

/judy/u fs/cipe/cipedict
./

./

Main Menu "E=End data entry "H=Help "r=Next value^P=Abort data entry ^D=Hardcopy TAB=Next field

Figure 6: Setup function in menu mode

- 12-

trace

This trace turns on the debugging statements from the application program:

or

> turn on appl_trace

> turn off appl_trace

debug level

A set of parameters are provided which can be set for tracing the specific executions of
functions. They include command line interpreter function related traces (parse_trace,

lex_trace, codegen_trace, functab_trace), a symbol table manipulation related trace
(symtab trace), hypercube executive traces (cube_command, cube_data,

cube symbol), and a general CIPE execution trace (exec_trace). A parameter called

'deb_ level' is provided to control the details of the trace; however, these traces are

meant for the programmer rather than a typical user.

or

> turn on name (e.g. executive) trace

> turn off name (e.g. executive) trace

In menu mode, the user may specify only appltrace which selects the level of debug-

ging messages provided in the application programs.

menuconIig

Figure 7 shows the entire menu tree as defined by the standard CIPE 'menuconfig' file

(Appendix A). CIPE allows the user to activate a different menu tree by supplying an
alternative menu configuration file in the menu mode.

ci_pedict

All CIPE application functions have their function names and path names defined in a

file called 'cipedict' (Appendix B). When a user wishes to execute an application pro-

gram he created, he has three options.

(1) The whole path_name and function_name can be specified. This is done by

typing the path_name plus function_name in CLI mode or by using menu entry

'my_func' under 'bltin+' sub-menu in Menu mode.

(2) The new function can be added to the function list using the CIPE provided
function 'add func'. This can be done by typing add_func ("function_name",

"path_name",-"help_message") in CLI mode or by using Menu entry 'add_func'
under 'bltin+' sub-menu.

(3) User creates his own 'cipedict' file and adds an entry for his function.

- 13-

mam+-

setup

1-disp+ -

mssdisp+ -

I- builtin+ -

x form+

filter+ -

restore+ -

[- geom+
I

I

I

I

I

I- stretch+ -

I- symbol+ -
I

I

I

I- alloc+ -

t

I

I

I

I- stretch+ -

I

kzcom

I- draw

I- draw color

e_se"
I- histo

_- cursor

I- hardcopy

I- mssdraw

I- mssplot

erase

t- add func

l- my_unc

I- typecast

I- pattern
1-math

I- star

b matrix+ -

I- rfft2

[- cfft2

I- powerspec

I- kernel

I- spfilter

t- freqfilter

I- medfilter

_- reseau

I- kernel

I- invfilter

b ML

I- ME

1- feature_psf

l- image...psf

I- rotate

I- scale

t- surfit

l- tiept

l- gentle

I- pyramid+ -

I- perc

b list

l- read

b copy

I- assign

_- save

l- delete

1-print

balloc

b select

b dealloc

b disp..Ust

linear

I- table

I- matop

l- cmatop

1-constop

l- reduce

I- expand

f- concat

Figure 7: Menu tree

- 14-

input path and output path

These two parameters allow the user to specify the default directories for all input and

output files. These path names can be overwritten at run time simply by specifying the
whole absolute path name. In the CLI mode, the path names are specified by two

separate commands as in the following examples:

or

> set input path to "/ufs/rnydir/"

> set output path to "/ufs/mydir/"

Alloc submenu

There are four functions in the 'alloc+' submenu: 'alloc', 'disp_list', 'select', and
'dealloc'. 'aUoc' and 'dealloc' are to allocate and de-allocate display unit. Since multi-

ple device allocation is allowed, 'disp_list' function allows the user to display a list of

allocated display units and 'select' function allows the user to select one of the units he
allocated.

alloc

The 'alloc' function allocates the display device. The host name, the display device

type, and the size of the display window are to be specified by the user as shown in
the example in Figure 8. In this specific example, there are two ivas display units of

size 1024x1024 (they are refered to as ivas 0 and 1). In addition to the two ivas, the

user may create as many Sun windows as he pleases by specifying the window size;
these windows will be assigned a unit number automatically by the system. In the CLI

mode, the syntax for 'alloc' is just like any other function:

> alioc (host_name, display_device_type, window_size)

select

The 'select' function selects the display device to be used from all the ones the user
has allocated. In menu mode, the combination of 'host name /device_type

/unit_number' is shown on the CIPE parameter window as shown in Figure 9; the user
simply uses "I" to select the one he desires. In the CLI mode, the syntax is as follows:

> select (display_unit_number)

deatloc

The 'dealloc' function de-allocates the display unit the user has selected.

> dealloc

-15-

0:alloc 1:select 2:dealloc 3:disp_list]

hostname
devicetype(sun/ivas)
devicenumber

judy
sun

512

alloc+ ^E=End data entry
^P=Abort data entry

^H=Help

^D=Hardcopy

"T=Next value

TAB=Next field

Figure 8: Display device allocation in menu mode

0:alloc l:select 2:dealloc 3:disp_list]

selected device /judy/ivas/O(unit=O)

alloc+ ^E=End data entry ^H=Help "T=Next value
^P=Abort data entry ^D=-Hardcopy TAB=Next field

Figure 9: Select display unit in menu mode

- 16-

The 'displist' functionprintsa list of display units user has allocated. This function
is particularly useful in the CLI mode because the user might not know the display unit

numbers the system assigns to all the display windows.

> disp_iist

- 17-

4. EXECUTIVE FUNCTIONS

The executive functions include data management and image display functions. In

menu mode, the data management functions are all in the 'symbol+' submenu, and the

display functions are in the 'disp+' submenu.

alphabetical order as follows:

Data management

assign --

copy --

delete --

list - -

print --

read --

save --

Image display

alloc

cursor

dealloc

disp list

draw

draw color

erase

hardcopy

histo

select

stretch

zoom

The individual functions are listed in

creates a CIPE symbol by assigning a value to it

copies data from one CIPE symbol to another

deletes a CIPE symbol

lists all existing CIPE symbols

prints out values of a CIPE symbol

reads data from a disk file to a CIPE symbol

saves a CIPE symbol to a disk file

allocates a display device

reads the cursor position and displays the

coordinate on the display screen

de-allocates a display device

prints a list of allocated display units

displays an image on the display screen

displays a color image on the display screen

erases the display screen

makes a hard copy of the display screen

generates a histogram of the displayed image

selects a display device previously allocated

scales the intensity of a displayed image

scales the size of a displayed image

- 19-

pRECEDZNG PAGE [3LANK NOT FILMED [/Ei_NTENIIONALLY BLANIt

add func EXECUTIVE FUNCTIONS

Name

add_func -- dynamically add a function entry

Synopsis

add_func ("function_name", "path_name", "belp_message")

Description

add_func adds an entry to a function table of CIPE; the added function can be

accessed just like the CIPE application functions during the CIPE section.

Menu mode path

Main --> builtin+ --> add func

- 20 -

EXECUTIVEFUNCTIONS alloc

Name

alloc -- allocate a display unit

Synopsis

alloc (hostname, display_devicetype, window_size)

Description

aUoc allocates a display device. The host computer name is required for CIPE to

activate the appropriate device driver and display software. In the CLI mode, the

burdens of finding out the exact host name and the device type name are on the
user. In menu mode, the available options are displayed on the screen.

Menu mode path

Main --> disp+ --> alloc+ --> alloc or

Application Function --> disp+ --> alloc+ --> alloc

-21 -

assign EXECUTIVE FUNCTIONS

Name

assign -- create a CIPE symbol by assigning values to it directly

Synopsis

symbol_nam = {data}

Description

assign is similar to the mathematical assignment statement. In the CLI mode,

this function assigns a single value or a small one dimensional array to a CIPE

symbol. For higher dimensional data (such as an image) or a large data array,
the "read" function should be used instead.

In menu mode, the user first specifies the symbol name and the dimension of the

data array. A new menu page then appears with blank spaces for the individual
data values.

Menu mode path

Main --> symbol+ --> assign or

Application Function --> symbol+ --> assign

- 22 -

EXECUTIVE FUNCTIONS copy

Name

copy -- copy all or partial data from one symbol to another

Synopsis

output = copy (input, {sl, ss, nl, ns}) for copying partial data,

output = input for copying the whole data array.

Description

copy duplicates all or part of the data from an input symbol to an output symbol.
The area of the data to be copied is specified by {sl, ss, nl, ns} where

sl : start line

ss : start sample
nl : number of lines

ns : number of samples

If the input symbol is a vector rather than an image, sl and nl are still required,
both of which should be 1.

Menu mode path

Main --> symbol+ --> copy or

Application function --> symbol+ --> copy

- 23 -

cursor EXECUTIVE FUNCTIONS

Name

cursor -- read the cursor position on the display screen

Description

This function is not available in the CLI mode; in menu mode, it reads the cursor

position and prints the coordinates on the CIPE parameter window

Menu mode path

Main --> disp+ --> cursor or

Application function --> disp+ --> cursor

- 24 -

EXECUTIVEFUNCTIONS dealloe

Name

dealloc -- de-allocate a selected display unit

Synopsis

dealloc ()

Description

dealloc de-allocates a selected display unit.

Menu mode path

Main --> disp+ --> alloc+ --> dealloc or

Application function --> disp+ --> alloc+ --> dealloc

- 25 -

delete EXECUTIVE FUNCTIONS

Name

delete -- delete a symbol and free the data area

Synopsis

delete (symbol_name)

Description

delete deletes an existing symbol and frees the data area for other usage.

Menu mode path

Main --> symbol+ --> delete or

Application function --> symbol+ --> delete

- 26 -

EXECUTIVEFUNCTIONS disp_list

Name

disp_list -- display a list of allocated display units

Synopsis

disp_list ()

Description

disp_list prints a list of allocated display windows, including for each window the

host_name, device_type_name, window_size, and an associated unit number
which the system assigned to each display window. (e.g./judy/sun/256/unit--4)

Menu mode path

Main --> symbol+ --> disp_list or

Application function --> symbol+ --> disp_list

- 27 -

draw EXECUTIVE FUNCTIONS

Name

draw -- display an image on a display device

Synopsis

draw (symbol_name, [start_line, start_sample})

Description

draw displays an image on the selected display device, starting with pi×el

{start_line, start sample}. Before using the 'draw' function, a display device
must be allocated.

Menu mode path

Main --> display+ --> draw or

Application function --> display+ --> draw

- 28 -

EXECUTIVE FUNCTIONS draw_color

Name

draw color -- display a color image on a display screen

Synopsis

draw_color (red_im age, green_image, blue_im age, {start_line, start_sample })

Description

draw color displays a color image on a selected display unit, starting with pixel

{start-line, start_sample}. Before using the 'draw_color' function, a color
display device must be allocated.

Menu mode path

Main --> display+ --> draw_color or

Application function --> display+ --> draw_color

- 29 -

erase EXECUTIVE FUNCTIONS

Name

erase -- erase all or part of an image from a display screen

Synopsis

erase ("i/o/a", {sx, sy, nx, ny})

Description

erase erases the portion of display screen specified by coordinates {sl, ss, nl, ns}
where

sl : start line

ss : start sample
nl : number of lines

ns : number of samples

i/o/a indicates image/overlay/all display frame buffers.

Menu mode path

Main --> display+ --> erase or

Application function --> display+ --> erase

- 30 -

EXECUTIVE FUNCTIONS list

Name

list -- show the list of all existing CIPE symbols user has created

Synopsis

symbols ()

Description

Typing 'symbols' in CLI mode or choosing the "list' function in menu mode

prints out a list of existing symbols

Menu mode path

Main --> symbol+ --> list or

Application function --> symbol+ --> list

-31 -

mssdraw EXECUTIVEFUNCTIONS

Name

mssdraw -- display multi-spectral images

Synopsis

mssdraw (image_symbol_name, band, {startline, start_pixel })

Description

mssdraw displays a multi-spectral image with specified band number.

Menu mode path

Main --> mssdisp+ --> mssdraw

- 32 -

EXECUTIVEFUNCTIONS print

Name

print -- print the contents of a symbol

Synopsis

print (symbol_name, {sl, ss, nl, ns})

Description

In CLI mode, only one dimensional data can be printed out, while in menu mode,
a two dimensional data area can be specified and printed out on the CIPE param-

eter window.

Menu mode path

Main --> symbol+ --> print or

Application function --> symbol+ --> print

- 33 -

read EXECUTIVE FUNCTIONS

Name

read -- read data from a disk file to a CIPE symbol

Synopsls

read symbol_name from "file_name"

Description

The disk file to be read by the CIPE function must have a corresponding CIPE
header file with the name 'filename.hdr'. CIPE header file contains the follow-

ing:
CIPE

offset = 8

number of lines = 128

number of samples = 128
number of bands = 1

type = byte

Menu mode path

Main --> symbol+ --> read or

Application function --> symbol+ --> read

- 34 -

EXECUTIVEFUNCTIONS save

Name

save -- write data from a CIPE symbol to a disk file

Synopsis

save (symbol_name, "file_name", {sl, ss, nl, ns})

Description

This function is the reverse of the 'read' function. It allows all or part of the

image to be saved to a disk file; the associated header file will also be created by
CIPE with the file name "data file name.hdr".

Menu mode path

Main --> symbol+ --> save or

Application function --> symbol+ --> save

- 35 -

select EXECUTIVE FUNCTIONS

Name

select -- select a display unit previously allocated

Synopsis

select (device_unit_number)

Description

Since multiple devices might be allocated, user uses this function to select one of

the allocated display windows for displaying the image

Menu mode path

Main --> disp+ --> aUoc+ --> select or

Application function --> disp+ --> alloc+ --> select

- 36 -

EXECUTIVEFUNCI'IONS stretch

Name

stretch -- perform intensity scaling on a displayed image

Synopsis

stretch (min, max)

Description

In CLI mode, 'stretch' scales the intensity values of a displayed grey-scale image

between the specified min and max values. In the Menu mode, both grey-scale

and color images can be manipulated (the user specifies the number of colors to
be scaled and the minimum and maximum intensities for each color). In either

case, this function only affects the intensity values on the displayed screen and

not the data.

Menu mode path

Main --> disp+ --> stretch or

Application function --> disp+ --> stretch

- 37 -

zoom EXECUTIVEFUNCTIONS

Name

zoom -- zoom a displayed image

Synopsis

zoom Ci/o/a", zoom_factor, {sl,ss })

Description

zoom scales the size of an image on the selected display screen; it does not affect
the data.

Option

i/o/a where

i : image plane
o : overlay plane

a : all planes

Menu mode path

Main --> disp+ --> zoom or

Application function --> disp+ --> zoom

- 38 -

5. APPLICATIONS

Theindividual applications are listed here in alphabetical order. They fall into the fol-

lowing six general groups:

Filtering

spfilter --

fr eqfilter --

medfilter--

kernel --

reseau --

convolves an image with a given kemel

convolves an image with a given kernel in

frequency domain

performs median filtering

generates kernel matrix in spatial domain

removes reseau marks from an image

Fourier Transform

rfft2 - -

cfft2 --

powerspec --

Power --

performs two dimensional FFT with a real input array

performs two dimensional FFT with a complex input array

calculates power spectrum of FFF results

takes FFT of a real image and displays its power spectrum

Restoration

ML

ME

invfilter

f eature..psf

irnage_.psf

restores a blurred image using Maximum Likelihood

restoration algorithm

restores a blurred image using Maximum Entropy

restoration algorithm

restores a blurred image using recursive inverse

convolution filtering method

creates a kemel using user specified line segments

creates a kernel using user specified sub_image area

- 39 -

Geom

rotate - -

scale - -

concal --

tiept --

surfit - -

gentle --

reduce --

expand --

merge --

Histogram

perc

rotates an image

scales the size of an image

concatenates two images

resamples an image using a given tie point file

resarnples an image using a least squares fit through

irregular tie points

generates regular grid tie point file using a least
squares fit through a set of irregular tie points

performs Gaussian pyramid operation on an image

performs expand pyramid operation on an image

mosaic two images using 'reduce' and 'expand' pyramid operations

Manipulations

-- linear sealing of an image histogram

Built-in Utilities

typecast --

math --

Matrix --

constop --

slat - -

pattern --

typecasting functions: char, int, and float

basic mathematical functions: sqrt, log, logl0, square,
abs, and minus

basic matrix operations: addition, subtraction, multiplication,

division, and the calculation of complex conjugate

basic matrix operation between a matrix and a constant

basic statistical functions: rain, max, median, std, var, and mode

generates images with simple patterns such as bar, checkered, etc.

- 40 -

APPLICATIONFUNCTIONS cfft2

Name

cfft2 -- perform FFT with complex input variables

Synopsis

(output_real, outputimaginary) = cfft2 (input_real, input_imaginary, mode)

Description

cfft2 performs a two dimensional FFT on complex variable input data. Two input
data arrays are required, for real and imaginary data respectively. Two output

arrays are generated containing the real and imaginary parts of the result. (This
function is not available in the CLI mode at this time.)

Option

mode = -1 : forward FFT

mode = 1 : inverse FFT

Menu mode path

Main --> xform+ --> cfft2

-41 -

cmatop APPLICATIONFUNCTIONS

Name

cmatop -- math functions involving two complex matrices: crop_add, cmp_sub,
cmp_mult, cmp_div, cmpc_mult -- add, subtract, multiply, divide and calculate the

complex conjugate of two complex input symbols.

Synopsis

(out_real, out_imagi) = cmp_add (sl_reai, sl_imagi, s2real, s2imagi)

(out_real, out_imagi) = crop_sub (sl_real, sl_imagi, s2_real, s2_imagi)

(out_real, out_imagi) = cmp_mult (sl_real, sl_imagi, s2_real, s2_imagi)

(out_real, out_imagi) = cmp_div (sl_real, sl_imagi, s2 real, s2 imagi)

(out_real, out_imagi) = cmpc_mult (sl_real, sl_imagi, s2_real, s2_imagi)

Description

These five functions perform basic mathematical functions between two complex

matrices. In the Menu mode, these functions are denoted by the operation sym-
bols: '+', '-', '*', 7' for addition, subtraction, multiplication, division, and '#' for

the calculation of the complex conjugate. (This function is not available in the
CLI mode at this time.)

Menu mode path

Main --> builtin+ --> matrix+ --> cmatop

- 42 -

APPLICATION FUNCTIONS coneat

Name

concat -- concatenate two images of compatible sizes together

Synopsis

output = concat (inputl, input2, ivert, iave)

Description

concat concatenates two images of compatible sizes into a single image. There

are two parameters to be specified in addition to the two input images required

for concatenation. If two images are to be concatenated horizontally, the parame-
ter 'ivert' is to be set to 0; otherwise ivert is 1. If 'iave' is set to 1, averaging of

the boundary will be performed.

Menu mode path

Main --> geom+ --> concat

- 43 -

constop APPLICATION FUNCTIONS

Name

constop -- math functions involving a matrix and a constant: cadd, csub, cmult,

cdiv -- add, subtract, multiply, and divide the content of an input symbol by a
given constant.

Synopsis

sout = cadd (s, c)
sout = csub (s, c)

sout = cmult (s, c)

sout = cdiv (s, c)

Description

These four functions add, subtract, multiply or divide every element in the input
symbol by a given constant.

Menu mode path

Main --> builtin+ --> matrix+ --> constop

- 44 -

APPLICATIONFUNCTIONS expand

Name

expand -- perform expand pyramid operation on an image

Synopsis

output = expand (input, pyramid_level)

Description

expand is one of the pyramid operations; it expands an image of N x N to 2N x
2N by interpolating sample values between the given pixels.

Menu mode path

Main --> geom+ --> pyramid+ --> expand

- 45 -

feature_psf APPLICATION FUNCTIONS

Name

feature_psf-- create a kernel using user specified features

Synopsis

This function requires the interactive graphic inputs, it is not available in the CLI
mode

Description

feature_.psf allows user to specify a feature by entering multiple line segments
using an interactive graphic input device; these segments are saved and generated
into a kernel for the purpose of deblurring an image.

Menu mode path

Main --> restore+ --> feature_.psf

- 46 -

APPLICATIONFUNCTIONS treqfilter

Name

freqlilter -- perform convolution / deconvolution in frequency domain

Synopsis

output = freq.filter (input, kernel, mode)

Description

freqfilter performs a convolution in the frequency domain using FFF; this is
meant to be used when the kemel size is large (12 or larger).

Option

mode = 1 : inverse FFT

mode = -1 : forwardFFF

Menu mode path

Main --> filter+ --> freqfilter

- 47 -

gentie APPLICATION FUNCTIONS

Name

gentie -- generate a tie point file consists of regular grid tie points

Synopsis

gentie ("input_tie_file", order of fit, {nptx, npty, gapx, gapy}, "outputtie_file")

Description

gentie performs a least squares fit through a set of irregularly spaced tie points,
and generates regular grid tie points based on the fitted coefficients. Besides the

input and output tie point file names, the user may also specify the default param-
eters 'order_of fit' and 'tie_parameter' ({nptx, npty, gapx, gapy}) where

nptx : number of tie points in the x direction

npty : number of tie points in the y direction

gapx : distance between two tie points in the x direction

gapy : distance between two tie points in the y direction

Menu mode path

Main --> geom+ --> gentie

- 48 -

APPLICATIONFUNCTIONS image_.psf

Name

image..psf-- create a kemel using user specified sub_image area

Synopsis

This function requires the interactive graphic inputs; it is not available in the CLI
mode

Description

image_.psf allows user to specify an image by entering the coordinates of the
upper left comer and the lower right comer using an interactive graphic input

device. This sub_image area is made into a kernel for the purpose of deblurring

an image.

Menu mode path

Main --> restore+ --> image_.psf

- 49 -

invfilter APPLICATION FUNCTIONS

Name

invfilter -- restore a blurred image using a constrained inverse filter algorithm

Synopsis

output = invfilter (input, kemel, noise_level(float), number of iteration,
{lamda(float), del_lamda(floaO })

Description

invfilter uses a constrained inverse FFT iteratively to restore a blurred image. The

user needs to supply the blurting kernel, the estimated noise level of the input
image, and the maximum number of iterations desired. The parameters 'lamda'

(the Lagrange multiplier) and 'del_lamda' are optional if run in menu mode.
Noise_level, lamda, and del_lamda are floating numbers.

Menu mode path

Main --> restore+ --> invfilter

- 50 -

APPLICATION FUNCTIONS kernel

Name

kernel -- generate a convolution kernel for image filtering or deblurring

Synopsis

output = kernel ("psf_type", {operandi, <operand2>})

Description

kernel generates the following types of convolution kernels:

psftype psfattr resultant psf

"box" {nl, ns}

"gauss" {sigmax, sigmay }
"vector" {magnitude, angle}

"circle" {radius }

Menu mode path

Main --> filter+ --> kemel

a rectangular kemel containing ones
a rectangular kemel based on a Gaussian point spread function

a rectangular kernel containing a vector

a square kernel based on a circular point spread function

-51 -

math functions APPLICATION FUNCTIONS

Name

math operations involving single argument: sqrt, log, loglO, square, abs, negate

-- these are similar to the math functions in the C math library.

Synopsis

output = sqrt (input)
output = log (input)

output = loglO (input)
output = square (input)

output = abs (input)

output = negate (input)

Description

All these basic math library functions require float datatype as input. If the input
is an array, the operation is done on each element.

Menu nmde path

Main --> builtin+ --> math

- 52 -

APPLICATIONFUNCTIONS matop

Name

matop -- add, subtract, multiply, and divide the contents of two input symbols

Synopsis

output = add(sl, s2)
output = sub (sl, s2)

output = mult (sl, s2)

output = div (sl, s2)

Description

These four functions add, subtract, multiply or divide the contents of two input

symbols. If the inputs are two images, the results are pixel by pixel operations.

The two input symbols must be of the same dimension.

Menu mode path

Main --> builtin+ --> matrix+ --> matop or

Main --> restore+ --> matop

- 53 -

ME APPLICATION FUNCTIONS

Name

ME -- restore a blurred image using a maximum entropy algorithm

Synopsis

output = ME (input, kemel, noise_level, d_lamda, numberofiterafion)

Description

ME uses a maximum entropy algorithm to restore a blurred image. The user
needs to supply the blurring kernel, estimated noise level of the input image, and

the maximum number of iterations desired as well as the input image. User may
also specify the step size d_lamda; however, the default value of 0.25 will be

used if it is not specified. Both noise_level and d_lamda should be specified as
floating numbers in the CLI mode to avoid misinterpretation.

See also

kernel for the generation of various kemel types and sizes

Menu mode path

Main --> restore+ -->ME

- 54 -

APPLICATION FUNCTIONS medfilter

Name

medfilter -- perform median filtering over an image

Synopsis

output_image = medfilter (input_image, window_size, tolerance)

Description

medfilter performs median filtering with given window size.

Menu mode path

Main --> filter+ --> medfilter

- 55 -

merge APPLICATION FUNCTIONS

Name

merge -- mosaic two images using pyramid operations

Synopsis

output = merge (inputl, input2, samplel, sample2, pyramid_level)

Description

merge utilizes pyramid operations 'reduce' and 'expand' to merge two images so

that the boundary blends without an apparent seam line. The implementation

allows the merge of two images to be along only a vertical line; also the length

of each image has to be power of 2. Besides the two input images, the user

needs to specify the vertical lines to be jointed on each image and the pyramid
level to be used.

Menu mode path

Main --> geom+ --> pyramid+ --> merge

- 56 -

APPLICATIONFUNCTIONS ML

Name

ML -- restores a blurred image using maximum likelihood algorithm

Synopsis

outputimage = ML (inputimage, kernel, noiselevel, number of iteration)

Description

ML uses maximum likelihood algorithm by Lucy and Richarson to restore a

blurred image. User needs to supply the blurring kernel, estimated noise level (a

floating point number) of the input image, and the maximum number of iterations

desired as wen as the input image.

See also

kernel for the generation of various kernel types and sizes

Menu mode path

Main --> restore+ -->ML

- 57 -

pattern APPLICATION FUNCTIONS

Name

pattern -- generate image patterns

Synopsis

output = pattern Cpattem_type", {image_width, image_length}, {min_inten,
max_inten}, {pattem_width, pattem_length}/{variance})

Description

pattern generates the following image patterns:

pattem_type pattem_attr resultant pattern

"bar" {width, length}

"checker" {width, length}
"plane" {width, length}
"randu"

"randg" {variance }

vertical bar stripes
checkered pattern

uniform intensity rectangle
uniform random noise
Gaussian random noise

Menu mode path

Main --> builtin+ --> pattem

- 58 -

APPLICATIONFUNCTIONS perc

Name

perc -- scale an image histogram linearly according to the specified upper and

lower percentage cutoff

Synopsis

output = perc_stretch (input, lower_perc, upper..perc)

Menu mode path

Main --> Stretch --> perc

- 59 -

Power APPLICATION FUNCTIONS

Name

Power -- perform FFF on a real image and output its power spectrum

Synopsis

output = Power (input)

Description

Power performs FFT on a real array and calculates its power spectrum

Menu mode path

Main --> restore+ --> Power

- 60 -

APPLICATION FUNCTIONS powerspec

Name

powerspec -- calculate the power spectrum of FFT results

Synopsis

output = powerspec (real fft result, imaginary, fft result)

Description

powerspec calculates the power spectrum of a complex array

Menu mode path

Main --> xform+ --> powerspec

- 61 -

reduce APPLICATION FUNCTIONS

Name

reduce -- perform Gaussian pyramid on an image

Synopsis

output = reduce (input, pyramid_level)

Description

reduce is one of the basic pyramid tools called 'Gaussian pyramid'. At each

level, the image is blurred and sub-sampled; thus the resolution of the image is

reduced in half at each level. Image sizes should be power of two for pyramid
algorithms.

Menu mode path

Main --> geom+ --> pyramid+ --> reduce

- 62 -

APPLICATIONFUNCTIONS reseau

Name

reseau -- remove reseau marks from an image

Synopsis

output = prep (input, "reseaulocation_filename")

Description

reseau uses correlation to detect the reseau marks from an image and removes

them

Menu mode path

Main --> filter+ --> reseau

- 63 -

rift2 APPLICATION FUNCTIONS

Name

rift2 -- perform two dimensional FFT with a real input image

Synopsis

(output real, outputimaginary) = rift2 (inputreal, mode)

Description

rift,? performs a two dimensional FFT on a real input array; the output is a com-
plex array.

Option

mode = 1 : inverse FFT

mode = -1 : forward FFT

Menu mode path

Main --> xform+ --> rift2

-64-

APPLICATION FUNCTIONS rotate

Name

rotate -- rotate an image n degrees counterclockwise

Synopsis

output_image = rotate (input_image, angle in degree)

Description

rotate rotates an image counterclockwise; the angle should be specified in degrees

(a floating point number).

Menu mode path

Main --> geom+ --> rotate

- 65 -

scale APPLICATION FUNCTIONS

Name

scale -- scale the size of an image

Synopsis

outputimage = scale (input_image, x_scale_factor, y_scale_factor)

Description

scale scales the size of an image; the scale_factors should be specified in floating
point numbers.

Menu mode path

Main --> geom+ --> scale

- 66 -

APPLICATIONFUNCTIONS spfilter

Name

spfilter -- convolve an image with a kemel

Synopsis

output_image = spfilter (input_image, kernel)

Description

spfilter convolves an image with a given kernel in the spatial domain. This func-
tion is meant for use with a small kernel size. When the kernel size is larger than

12 it is more efficient to use thefrecllilter function.

Menu mode path

Main --> filter+ --> spfilter

- 67 -

slat APPLICATIONFUNCTIONS

Name

statistical functions: rain, max, median, std, var, mode -- evaluate minimum, max-

imum, median, standard deviation, variance, and mode of an input array.

Synopsis

output = min (input)

output = max (inpuO

output = median (input)

output = std (inpuO

output = vat (input)

output = mode (input)

Description

rain, max, median, std, and var evaluate the minimum, maximum, median, stan-

dard deviation, or variance of an input array. 'mode' returns the intensity value
of the peak in the array's histogram.

Menu mode path

Main --> builtin+ --> stat

- 68 -

APPLICATIONFUNCTIONS surfit

Name

surfit -- perform a least squares fit through a set of tie points and warp the image

Synopsis

output = surfit (input, "tiept_file", orderoffit)

Description

surfit performs a least squares fit through a set of irregularly spaced tie points,

then resamples the image based on the fitted coefficients.

Menu mode path

Main --> geom+ --> surfit

- 69 -

tiept APPLICATION FUNCTIONS

Name

tiept -- resample an image based on a set of tie points

Synopsis

output = tiept (input, "tiept_file")

Description

tiept resamples an image based on a set of regularly spaced tie points. Bi-linear

interpolation is used while resampling.

Menu mode path

Main --> geom+ --> tiept

- 70 -

APPLICATION FUNCTIONS typecast

Name

typecast functions: char, int, float -- convert datatype of input symbol to charac-

ter, integer, or float datatype

Synopsis
output = char (input)

output = int (input)

output = float (input)

Description

These three functions convert the data in the input symbol to unsigned char,

integer, or float datatypes respectively.

Menu mode path

Main --> builtin+ --> typecast

-71 -

Appendix A -- CIPE menu configuration file

MENU mainmenu

setup/setup
symbol+/Symbol
disp+/Display
mssdisp+/Mssdisp
builtin+/Builtin
xform+/Xform
filter+/Filter
restore+/Restore

geom+/Geom
stretch+/Hsu'etch
END

MENU Builtin

symbol+/Symbol
disp+/Display
add func/appl
my_nc/appl
typecast/appl
pattem/appl
math/appl
stat/appl
matrix+/Matrix
END

MENU Matrix

matop/menu_bltin
cmatop/appl
constop/appl
END

MENU Xform

symbol+/Symbol
disp+/Display
rfft2/appl
cfft2/appl
powerspec/appl
END

MENU Filter

symboi+/Symbol
disp+/Display
kernel/appl
spfilter]appl
freqfilter/appl
medfilter/appl
reseau/appl
END

- AI -

Appendix A -- CIPE menu configuration file

MENU Geom

symbol+/Symbol
disp+/Display
pyramid+/Pyramid
surfit,/appl
gentie/appl
tiept/appl

rotate/appl
scale/appl
concat/appl
END

MENU Pyramid
reduce/appl
expand/appl
merge/appl
END

MENU Restore

symbol+/Symbol
disp+/Display
feature._psf/appl
image_psf/appl
kemel/appl
invfilter/appl
ME/appl
MI.Jappl
END

MENU Hslretch

symbol+/Symbol
disp+/Display
percent/appl
END

MENU Mssdisp
symbol+/Symbol
stretch+/Stretch
mssdraw/mssdisp
mssplot/mssdisp
erase/display
zoom/display
END

MENU Display
symbol+/Symboi
aUoc+/Alloc
stretch+/Stretch

zoom/display
draw/display
drawcolor/display
erase/display
histo/display
cursor/display
hardcopy/display
END

-A2-

Appendix A -- CIPE menu configuration file

MENU Stretch

linear/display
table/display
END

MENU Alloc

alloc/display
select/display
dealloc/display
disp_list/display
END

MENU Symbol

list/listsymbol
read/read_image
copy/copy_symbol
assign/assign_data
save/save_image
delete/delete

print/print_dam
END

- A3 -

Appendix B -- CIPE function dictionary file

function add func

pathnarne "hi'tin function"
help "add_func (-function_name, pathname, help_msg) "
[
! cube
function cube reset

pathname "blfin_function"

help "cube_reset"
1

! symbol stuff

function copy

pathname "bltin function"
help "output -- _opy (input, { start_line, start_sample, number_of line, number_of_sample })"
function delete

pathname "bllin function"
help "delete (inl_'Ut)"
!

[builtin 2arg
function matop
pathname "bltin function"

help "output = 7natop (operation, input1, input2)"
function add

pathname "appl/bltin/cp/matop"
help "output = add (input1, input?.) "
function sub

path.name "appl/blfin/cp/matop"

help "output = sub (input1, input2) "
function mult

pathname "appl/blfin/cp/matop"

help "output = mult (input1, input2) "
function div

pathname "appl/bl tin/cp/matop"
help "output = div (inputl, input2) "
l

!typecast
function typecast

pathname "appl/bl tin/cp/bltintype"

help "output = typecast (outputdata_type, input) "
function char

pathname "appl/bl tin/cp/bltintype"

help "output = char (input) "
function int

pathname "appl/bltin/cp/bltintype"

help "output = int (input) "
function float /

pathname "appl/bl tin/cp/bltintype"

help "output = float (input) "

! math functions
function math

pathname "appl/bltia/cp/bltinmath"
help "output = math (operation, input) "

function sqn
pathnam¢ "appl/bl tin/cp/bltinmath"
help "output = sqrt (input) "

function log
pathname "appl]bl tin/cp/bltinmath"

help "output = log (input) "

function loglO

pathname "app1/bl tin/cp/bl dnmath"

help "output = IoglO (input) "

-B1 -

Appendix B -- CIPE function dictionary file

function square

pathname "appl/bltin/cp/bltinmath"

help "output = square (input) "
function abs

pathname "eppl/blfin/cp/blfinmath"

help "output = _ (input) "
function negate
pathname "sppl/bltin/cl_ltinmath,,

help "output = negate (input) "
I

_statistics functions
function star

pathname "appl/blfin/ci_Itinsta t"

help "output = star (operation, input) "
function rain

pathname "appl/bltin/cp/blfinstat"
help "output = rain (input)"
function max

pathname "appl/bltin/cl_ltinstat"
help "output = max (input)"
function mean

pathname '°appl/bltin/cl_ltinstat"
help "output = mea_ (input)"
function medina

pathname "appl/bltin/cp/bltinstat"
help "output = medim-t (input)"
function mode

pathname "appl/bllin/ci_oltinstat"
help "output = mode (input)"
function std

pat]marne "sppl/bltin/cl_ltinstet"

help "output = std (input)"
function vat

pathname "app]/bl dn/cp/bltinstat"

help "output = var (input)"

! complex 2arg matrix operation

function cmatop

pathname "g)pl/bldn/cp/cmatop"

help "{out real, out imagi} = cmatop (operation, inputl_real, inputl imagi, input2 real, input2 imagi)
-- not implemented Tn CLI mode yet" - - -
function cmpadd

pathname "appl/bl tin/c-p/era atop"

help " {outreal, out imagi} = cmpadd (inputl real, inputl imagi, input2 real, input2 imago
-- not implemented m CLI mode yet" - - - -
function cmpsub
pathname "appl/bltin/cp/cmatop"

help " {outreal, out imagi} = cmpsub (inputl real, inputl imagi, input2 real, input2 imagi)
-- not implemented in CLI mode yet" - - - -
function cmpmuh

pathname "sppl/bltin/cp/cmatop"

help " {out real, out imagi} = cmpmuh (inputl real, inputl imagi, input2 real, input2 imagi)
-- not impl_nentod in CLI mode yet" - - - -
function cmpdiv

pathname "appl/bltin/cla/cmatop"

help " {out real, out imagi} = cmpdiv (inputl real, inputl imagi, input2 real, input2 imagi)
-- not implemented m CLI mode yet" - - - -

- B2

Appendix B -- CIPE function dictionary file

! matrix arithmetic operation with a constant

function constop

path.name "appl/bltirdcp/constop"

help "output = constop (operation, inputl, input2)"
function cadd

pathname "appl/bl tin/cp/cons top"
help "output = cadd (inputl, input2)"
function csub

pathname "appl/bltirdcp/constop"

help "output = csub (inputl, input2)"
function cmult

pathname "appl/bltin/cp/cons top"

help "output = cmult (inputl, input2)"
function cdiv

path.name "appl/bltin/cp/constop"

help "output = cdiv (inputl, input2)"
[

[display utilities
function alloc

pathname "display"
help "alloc (host_name, device_type, window_size) "
function select

pathname "display"

help "select (unit_number) "
function dealloc

pathname "display"

help "dealloc -- no argument needed"
function disp_list

pathname "display"

help "disp_list -- no argument needed"
function draw

pathname "display"
help "draw (input, {startline, start_sample}) "
function draw color

pathname "display"

help "draw_color (input_red, input_green, inputblue, {start/ine, start_sample})"
function erase

pathname "display"

help "erase (i/o/a, {start_line, start_sample, number_of_line, numberofsample}) "
function lstretch

pathname "display"

help "lstretch (min, max)"
function zoom

pathname "display"

help "zoom (i/o/a, zoom factor. {start line, start_sample}) "

! multi spectral data dismay
function mssdisp
pathname "disp/mssdisp"

help "mssdisp (input, band, {startline, start_sample}) "
!

[pattern generator
function pattern

pathname "appl/bl tin/hos t/pattern"

help "output = pattern (pattern_type, pattern_size{length,width},
inten{dark,light},size{length, width}) -- consult menu mode for

the param of specific pattern"

- B3 -

Appendix B -- CIPE function dictionary file

[spatial filter
function spfilter
pathname "appl/filter/cp/spfilter"

help "output = spfilter (input_image, input_kernel)"
function medfilter

patlmame "_i/filter/cp/medfilter"

help "output = medfilter (input_image, [nlw(3), nsw(3)}, thresh(0))"

! frequency filter
function freqfilter
pathname "appl/filter/cp/freqfi lter"

help "output = fi'eqfilter (input_image. input..j3sf, mode)"

[preprocessing
function reseau

patimame "g_pl/filter/cp/prep"

help "output = prep (input. reseau file) -- this program requires hypercube"
t

! kernel generator
function kernel

pathname "_pi/filter/host/kernel"

help "output = kernel (psf_type, {operand 1, <operand2> })"
!

I power spectrum
function Power

pathname "appl/xform/cp/power"
help "output = Power (input)"
function powerspec
pathname "appl/xform/cp/powerspec"

help "output = powerspec (real_fftresult. imagi_fftresult, fold(y/n))"

[complex input fft2
function cfft2

pathname "appl/x_fonn/cp/c fft2"

help "(output_real, output__imagi) = cfft2 (input_real, inputimagi, mode)
-- not implemented in CLI mode yet"
f

! real input fft2
function rfft2

pathname "lppl/xform/cp/rfft2"

help "(output real. output imagi) = rift2 (input, mode)
-- not implemmted
in CLI mode yet"
!

restoration using inverse filter
function invfilter

pathname "appl/restoredcpfmv filter"

help " output = invfilter (input_image, input..psf0 noise_level(float), niter, {lambda(float), del lamda(float)})"

! restoration using maximum likelihood constraint
function ML

pathname "appl/restore/cp/M L"

help " output = ML (input image, input_.psf, noise_level(float), niter)"

[restoration using maximum entropy consuraint
function ME

pathname "appl/restore/cp/ME"

help " output = ME (input image, input_psf, noise level(float), d_lamda(floa0, niter)"

- B4 -

Appendix B -- CIPE function dictionary file

!

!psf

function feature..psf
pathname "appl/restore/host/gen_ps f"
help "it needs interactive graphic device -- not available in CLI mode"
function image_psf
pathname "appl/restore/ho st/gen_.psf"
help "it needs interactive graphic device -- not available in CLI mode"
!

! pyramid related functions
[pyramid reduce
function reduce

pathname "appl/geom/cpReduce"

help " output = reduce (input, pyramid_level)"
I pyramid expand

function expand
pathname "appl/geom/cp/expand"

help " output = expand (input, pyramid_level)"

function merge

pathname "appl/geom/cp/merge"
help " output = merge (inputl, input2, sample1, sample2, pyramid_level)"
[concatenate two images

function concat

pathname "appl/geonffhost/concat"
help " output = concat (input1, input2, istat(O for horiz, 1 for vertical),
iave(i if averaging))"

function rotate

pathname "appl/geom/cp/rotate"
help " output = rotate (input, angle(float), clip_option)"

function scale

pathname "appl/geom/cp/sc ale"
help " output = scale (input, x_scale_factor(float), y_scale_factor(float))"
function surft

pathname "appl/geom/cp/sudit"

help "output = surft (input, tiept_file, order_of fit)"

function gentle
pathname "appl/geom/cp/gentie"

help "output_tiept_file = gentle (input tie fie, order_of fit, tiept_param{nptx,npty,gapx,gapy})
-- use menu mode"

function tlept

pathname "appl/geom/cp/tiept"
help "output = tiept (input, tlept__file)"
function data dist

pathname "al_Pl/diag/cp/datadist"

help "output = datadist (input, dist_type)"
function percent
pathname "appl/stIetch/cp/perc_sl_etch"
help "output = perc..s_etch (input, lowerTc, upper_.perc)"
function sat

pathname "appl/geom/cp/sar"

help "output = sat(input, zres/xyres)"

- B5 -

